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Abstract. The detection of long tenn trends in woody vegetation in Queensland, Australia, 
from the Landsat-5 TM and Landsat-7 ETM+ sensors requires the automated prediction of 
overstorey foliage projective cover ( FPC) from a large volume of Landsat imagery. This 
paper presents a comparison of parametric (Multiple Linear Regression, Generalized Linear 
Models) and machine teaming (Random Forests, Support Vector Machines) regression 
models for predicting overstorey FPC from Landsat-5 TM and Landsat-7 ETM+ imagery. 
Estimates of overstorey FPC were derived from field measured stand basal area (RMSE 
7.26%) for calibration of the regression models. Independent estimates of overstorey FPC 
were derived from field and airborne LiDAR (RMSE 5.34%) surveys for validation of model 
predictions. The airborne LiDAR-derived estimates of overstorey FPC enabled the bias and 
variance of model predictions to be quantified in regional areas. The results showed all the 
parametric and machine learning models had similar prediction errors (RMSE < 10%), but the 
machine learning models had less hias than the parametric models at greater than -60% 
ovcrstorcy FPC. All models showed greater than I 0% bias in plant communities with high 
herbaceous or understorey FPC. The results of this work indicate that use of overstorey FPC 
products derived from Landsat-5 TM or Landsat-7 ETM+ data in Queensland using any of the 
regression models requires the assumption of senescent or absent herbaceous foliage at the 
time of image acquisition. 
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1 INTRODUCTION 

Queensland is the second largest state in Australia and covers an area of 1.73 million km2 

therefore remote sensing is the only feasible approach to repeatable and cost-effective 
mapping of vegetation cover. The Statewide Landcover and Trees Study' (SLATS) has used 
Landsat-5 Thematic Mapper (TM) and Landsat-7 Enhanced Thematic Mapper Plus (ETM+) 
for mapping land cover change since 1988 [I], carbon accounting [2,3] and mapping the 
extent of regenerating woody vegetation [4]. These applications have assessed woody 
vegetation cover for single dates or changes between two dates (1 to 3 years apart), however 
the detection of long term trends in woody vegetation cover requires fractional estimates, 
which can be produced from the SLATS archive of near annual TM and ETM+ imagery. 
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The metric of vegetation cover adopted in many Australian vegetation classification 
frameworks is Foliage Projective Cover (FPC) [5]. FPC is defined as the vertically projected 
percentage cover of photosynthetic foliage of all strata [ 6], or equivalently, the fraction of the 
vertical view that is occluded by foliage. Overstorey FPC is defined as the vertically projected 
percentage cover of photosynthetic foliage from tree and shrub life forms greater than 2 m 
height and was the definition of woody vegetation cover adopted by SLATS [7]. Overstorey 
FPC is one minus the gap probability at a zenith angle of zero and therefore it has a 
logarithmic relationship with effective leaf area index [8]. Since Australian plant communities 
are dominated by trees and shrubs with sparse foliage and irregular crown shapes, overstorey 
FPC is a more suitable indicator of a plant community's radiation interception and 
transpiration than crown cover [9]. 

Operational mapping of overstorey FPC requires an efficient and automated method due 
to the large volume of Landsat data that require processing and interpretation. Numerous 
studies have evaluated different methods for estimating overstorey FPC or similar metrics 
over large areas for data from multi-spectral, high temporal resolution, coarse spatial 
resolution sensors such as AVHRR [10-12]. There has been far less work estimating 
overstorey FPC or similar metrics from multi-spectral medium spatial resolution sensors over 
large areas, especially in Australia [7,13]. This is likely due to limited ground truth data for 
calibration and radiometric, spatial and spectral uncertainties in Landsat imagery [14]. There 
have been several studies investigating different statistical regression techniques for 
estimating vegetation cover metrics across multiple Landsat scenes in Queensland 
[4,7,13,15]. Despite this, a controlled comparison of statistical regression techniques for 
predicting overstorey FPC over Queensland from the TM and ETM+ sensors was lacking. 

Parametric techniques such as multiple linear regression (MLR) are commonly employed 
for the estimation of fractional vegetation cover [ 4, 15]. MLR is similar to linear spectral 
unmixing when the calibration data is representative of the a priori distribution of the cover 
fraction [16]. Several studies have shown that MLR can be used to predict fractional 
vegetation cover provided the calibration data set is proximate to the validation data set [ 17-
19]. Generalized linear models (GLM) are an extension ofMLR that allow non-normal error 
distributions and bounded response variables, thus imposing additional constraints based on 
prior knowledge of the mechanism by which the data was generated. GLMs have been used 
for the prediction of vegetation cover from MODIS, a coarse spatial resolution sensor [20,21]. 

Machine learning techniques such as regression trees have often been used to build more 
advanced predictive models from remote sensing data [10,12,18]. These techniques are 
defined here as inductive algorithms that identify patterns and minimize prediction error 
through repeated, automated learning from a training dataset [22]. Numerous remote sensing 
studies have shown they handle non-linear relationships within high dimensional remotely 
sensed data sets, however a commonly cited limitation is that they over-fit the training data 
and do not predict accurately on independent data [ 13, 18,22]. Random forests (RF) and 
support vector machines (SVM) are two recently popular machine learning algorithms that 
aim to minimize over-fitting and have previously been applied to classification problems with 
airborne hyperspectral data [23,24]. However there has been relatively little research 
evaluating them for regression problems with multispectral satellite data. 

Validation of overstorey FPC predictions derived using any of these regression algorithms 
is required to: (i) select the best model to implement operationally; (ii) provide estimates of 
product accuracy and precision across a range of land cover types; and (iii) determine 
limitations of the products that need to be targeted in future research. Field acquisition of 
estimates of overstorey FPC can provide a highly accurate calibration or validation dataset, 
but the disadvantages are time constraints and the cost of acquisition which limit the number 
of observations that can be acquired over large areas. This makes accuracy assessment of 
predictions at local to regional scales impractical, particularly within remote and inaccessible 
areas of Queensland. Estimates of accuracy and precision of overstorey FPC predictions are 
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required by end users for ongoing studies attempting to detect processes such as woodland 
thickening and natural dieback using long-term time-series of Landsat data [3,25]. 

High to medium spatial resolution data are typically used as a tool for scaling up field 
measurements to the coarse spatial resolution of sensors such as MODIS [11,26] but have 
also been used for validation of products from medium spatial resolution sensors [ 4]. The 
validation approach taken in this work was to derive estimates of overstorey FPC from 
airborne Light Detection and Ranging (LiDAR). LiDAR records the time taken between the 
emission and receiving of a pulse of light and also records the intensity of received returns. A 
number of studies have spatially aggregated returns from airborne LiDAR sensors to simulate 
vertical profiles of fractional cover using either the proportion of returned energy or counts of 
returns [11,27-29]. Airborne LiDAR was chosen as it is able to derive spatially continuous 
estimates of FPC from these vertical profiles for different strata within the canopy. Previous 
studies have demonstrated comparable levels of accuracy and precision to field measurements 
of overstorey FPC for different environments in Queensland [27,28]. 

For any specific application it is often necessary to compare several candidate algorithms 
using multiple criteria other than just the accuracy of model fit to the training data [30]. The 
aim of this work was to conduct a controlled comparison of parametric (MLR, GLM) and 
machine learning regression techniques (RF, SVM) for predicting overstorey FPC across 
multiple. Landsat scenes in Queensland, Australia. These techniques were selected for 
comparison because they are suitable for developing a predictive model using an extensive 
field dataset developed by SLATS [6]. The comparison of the regression techniques was done 
by assessment of the prediction error from: (i) the model fits; and (ii) validation using 
estimates of overstorey FPC derived from independent field and LiDAR surveys acquired 
over nineteen different land types in Queensland. 

2METH0DS 

2.1 Data acquisition and pre-processing 

The 1.73 million km2 land area of Queensland includes a wide variety of landscapes across 
temperate, wet and dry tropics and semi-arid to arid climatic zones (Fig. l ). Approximately 
0.837 million km2 (48%) of Queensland is covered by woody vegetation [l]. Figure l shows 
the location of field, image and airborne LiDAR survey data used in this work. The 
acquisition and pre-processing of these data are presented in this section. 

2.1.1 Field data 

The four field survey datasets sourced for this work are described in Table I. The Kuhnell et 
al. [7], Hassett et al. [32] and present study field sites were located in mature undisturbed 
stands over a range of vegetation communities on various soil types and covering a range of 
structural formations from sparse low open woodland to tall closed forest communities. The 
Scarth et al. field sites were acquired on grasslands and land cleared to pasture. Estimates of 
stand basal area (SBA) were acquired using a calibrated optical wedge [33] or the Bitterlich 
method [32]. Floristic composition and Munsell soil colour were recorded at all sites. 

Table I. Descrietion of the four field surve:t:ed datasets used in this work. 
Data Observation Nominal SBA FPC 

Source Period Plot Area N Counts I N Point intercepts Strataf 

Kuhnell et al. [7] 1996-2005 1 ha 1397 5 221 100-200 0/U/H 

Hassett et al. [32] 1994-1995 6 ha 51 5-12 51 200-600 0/U/H 

Scarth et al. [ 15] 1999-2006 I ha 514 5-7 514 200-300 H 
Present study 2004-2005 I ha 47 7 47 300 0/U/H 
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Fig. 2. Schematic of the sampling design used at the field sites coincident with the 
LiDAR surveys (Sec. 2. I .3). Estimates of overstorey foliage projective cover were 
derived from three 100 m point intercept (I m spacing) transects oriented 0°, 60° 
and 120° from magnetic north (black dotted lines). Stand basal area was calculated 
as the average from seven optical wedge counts (green circles) located at 25 m and 
75 m along each transect and the centre of the nominal I ha field plot. 

The 47 field sites surveyed for the present study are near coincident with the LiDAR 
acquisitions described in Sec. 2.1.3. They were not directly used for calibration of the 
regression models, but reserved for derivation of overstorey FPC from the airborne LiDAR 
data (Sec. 3.1), and direct validation of the regression model predictions (Sec. 3.3.1). An 
empirical assessment of the impact of herbaceous FPC on the regression model predictions of 
overstorey FPC was done using a subset of 198 field sites from Scarth et al. [15] that 
provided estimates of herbaceous FPC in areas of zero SBA. 

2.1.2 Jmage data 

TM and ETM+ imagery were acquired with Australian Centre for Remote Sensing (ACRES) 
Level-5 processing+. The ACRES Level-5 processing includes systematic radiometric and 
geometric corrections and two dimensional resampling to fit a specific earth datum and map 
grid. It is similar to the USGS Level I G processing. Scenes providing near-annual 
acquisitions between 1987 and 2005 were used in this work. The footprints of the 88 scenes 
required to cover Queensland are shown in Fig. 1. The selection of image dates was restricted 
to dry season months (May to October inclusive) in order to minimize cloud cover and 
photosynthetic herbaceous ground cover which reduces the spectral contrast between the 
foliage of woody and herbaceous plants. 

All TM and ETM+ images were geometrically registered to an orthorectified ETM+ 
image mosaic based on differential GPS ground control points [35]. The onboard radiometric 
calibration for TM was removed and replaced with a vicarious calibration based on a model 
of the lifetime response of the sensor [31]. Pre-flight calibration was used for ETM+. An 
empirical radiometric calibration was applied to top-of-atmosphere (TOA) reflectance to 
remove combined surface and atmospheric bi-directional reflection distribution function 
(BRDF) effects [36]. In order to minimize scene to scene factors ofuncertainty in the training 

t http://www.ga.gov.au/acres/techdocs/techdoc.jsp 
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data, Band l was excluded due to remaining atmospheric effects from Rayleigh scattering 
[36]. Reflectance values affected by cloud, cloud shadow, land clearing, surface water or 
topographic shadow in any image date were removed using Landsat-derived masks [37]. 

Vapour pressure deficit (VPD) was included as a predictor as the evaporative power of the 
atmosphere in the boundary layer above the canopy has beert shown to be strongly correlated 
with overstorey FPC [9,38]. VPD is defined as the difference between actual vapour pressure 
and vapour pressure under saturated atmospheric conditions therefore it is a direct measure of 
atmospheric demand for moisture. VPD was calculated as a long-term average of interpolated 
5 km spatial resolution daily grids derived by Jeffrey et al. [39] from 1957 to 2005. 

2.1.3 Airborne liDAR data 

A total of nineteen LiDAR flight paths were acquired by a commercial data provider using an 
Optech ALTM3025 laser scanner. Each of the transects were between 10 and 20 km long 
with approximately a 300 m swath (maximum scan angle of I 0°), average sample spacing of 
0.93 m (scan rate of 25,000Hz) and a beam divergence of 0.3 milliradians (0.23 m footprint). 
It is important to note that the data could only be acquired opportunistically due to the 
purchasing arrangement with the data provider and the final positions of transects were 
determined by vehicle access so the sampling design was not random. The aim was to sample 
the range of structural formations and remnant vegetation communities that are· dominant in 
Queensland so the acquisitions were stratified as much as possible. Expert knowledge and 
qualitative observations from extensive field work [32], l: I 00,000 scale maps of Regional 
Ecosystems [40] and Landsat overstorey FPC products (MLR model) were used to define the 
19 regions within which LiDAR surveys were able to be acquired. 

Descriptions of the LiDAR surveys are provided in TaJ,le 2 and their locations shown in 
Fig. 1. Field work was conducted at 16 of the 19 survey sites and, if possible, was completed 
within one month of the LiDAR acquisition. Section 2.1.1 describes the procedures followed 
at the 47 sites. Up to four sites were acquired for each survey, each following the sampling 
design shown in Fig. 2. Example photographs indicating the range and structure of plant 
communities sampled are shown in Fig. 3. 

The Optech AL TM 3025 sensor records the range to maximum power of the first and last 
peaks in the time distribution of the return signal. A detection threshold determines the 
minimum power that can qualify as a peak in the return signal. A scaled value of any detected 
peaks is recorded by the sensor as the "intensity". The commercial data provider processed 
this information using Optech's REALM software to provide time sequential format ASCII 
files for each flight path. Each file contained fields of the easting, northing, elevation above 
sea level and intensity of first and last returns in order of time received at the sensor. Data 
were projected to the Geodetic Datum of Australia 1994. All subsequent processing routines 
were implemented in IDL ~, 6.2 [41]. 

The next step in analyzing these data was to classify returns originating from the ground. 
Due to reset delays in the circuitry of the Optech ALIM 3025 sensor, the last return has to be 
greater than 4.9 m after the first return otherwise both timing circuits will measure the same 
return [ 42]. Consequently, last returns of pulses with the first and last return elevation 
difference less than 4.9 m were discarded from the datasets. A progressive morphological 
filter of last returns based on the algorithm of Zhang et al. [43] was then implemented. Only 
the last returns were filtered because they have greater penetration through the canopy. 
Elevation of the ground at the position of non-ground returns was estimated by inverse 
distance weighted interpolation with an exponent of two. The height of all returns above the 
ground was then calculated by subtracting the ground elevation from the return elevation. 
Solitary pulses with unrealistic heights were discarded. 
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Table 2. Survey name (number of field sites), dates of the airborne LiDAR and field survey acquisitions, 
centre location and description of the plant community structure, dominant woody species and substrate. 

Survey 

adav01(4) 

adav02(2) 

adav03(3) 

aramOl(O) 

aram02(4) 

cade01(2) 

chat01(3) 

chin01(2) 

chin02(3) 

chin03(1) 

chin04(4) 

dirrOJ (0) 

gold01(2) 

Acquisition dates 

LiDAR: 2004/03/22 
Field: 2004/04/23 

LiDAR: 2004/03/23 
Field: 2004/04/24 

LiDAR: 2004/03/22 
Field: 2004/04/25 

LiDAR: 2004/03/23 
Field: -

LiDAR: 2004/03/23 
Field: 2004/04/29 

LiDAR: 2004/03/23 
Field: 2004/04/26 

LiDAR: 2004/03/25 
Field: 2004/07/22 

LiDAR: 2005/06/23 
Field: 2005/07 /l I 

LiDAR: 2005/06/23 
Field: 2005/07/11 

LiDAR: 2005/06/23 
Field: 2005/07/12 

LiDAR: 2005/06/23 
Field: 2005/07/13 

LiDAR: 2004/03/22 
Field: -

LiDAR: 2005/05/03 
Field: 2005/08/19 

Location 

144.56°E 26.02°s 
291 mASL 

144.76°E 24.98°S 
364mASL 

143.89°£ 24.99°S 
188mASL 

145.53°E 23. J 7°S 
277 m ASL 

145.72°E 23.00°S 
480 m ASL 

142.45°£ 23.03°S 
250mASL 

145.65°E 19.98°S 
381 m ASL 

150.45°E 26.34°S 
336mASL 

150.61°£ 26. J4°S 
334m ASL 

I 50.82°E 26.24°S 
446m ASL 

150.98°E 26.33°S 
398 mASL 

147.65°£ 28.70°S 
153 m ASL 

I 52.83°E 27.43°S 
393 mASL 

gold02(2) LiDAR: 2005/04/01 153.49°E 27.44°S 
Field: 2005/07/29 114 m ASL 

gunp01(3) LiDAR: 2004/03123 139.50°E 19.79°S 
Field: 2004/04/27 348 m ASL 

quil01(4) LiDAR: 2004/03/22 
Field: 2004/04/21 

quil02(4) LiDAR: 2004/03/22 
Field: 2004/04122 

LiDAR: 2005/06/24 
Field: -

144.27°E 26.88°S 
185 m ASL 

143.53°E 26.21°S 
160mASL 

149.81 °E 22.65°S 
49 mASL 

Description 

Low woodland (Acacia anuera). Red sandy clay 
loam soils. 

Woodland (Acacia harpophylla, Acacia 
catenulata, Dodonaea sp. ). Red clay to sandy-clay 
loam with scattered silcrete stone. 

Low open woodland (Acacia cambagei. A.anuera). 
Red gravely clays and texture contrast soils. 

Low woodland (A.cambagei). Brown-reddish and 
grey cracking clay soils with light stone cover. 

Open woodland (Eucalyptus spp., Melaleuca sp., 
A.shirleyi). Loamy red/yellow soils on sand plains. 

Low open woodland (A.aneura, A.shirleyz). Stony 
lithosols with areas of weathered rock outcropping. 

Open woodland (Eucalyptus spp.). Alluvial plains 
with clays and texture contrast soils. 

Open forest ( Callitris sp. ). Duplex soils with sandy 
surfaces. 

Open forest (E.microcarpa, Euca(vptus populnea, 
Callitris sp. ). Deep sandy soils. 

Tall closed forest (Euca(vptus spp., 
A.harpophylla). Deep sandy soils. 

Tall open forest (Corymbia maculata, 
E.moluccana, Angophora costata). Lateritic 
duricrust soils. 

Woodland (E. coolabah). Clay or sometimes 
texture contrast soils. 

Tall open forest (E.racemosa, Corymbia 
gummifera, Banksia aemula). Coastal dunes with 
leached sandy soils. 

Open forest (Eucalyptus spp.). Soils consist of 
metamorphosed sedimentaries and interbedded 
volcanics. 

Low woodland (Co1ymbia papuana, A.shirleyi, 
Eucalyptus spp. ). Skeletal soils with iron stone 
scattered on surface. 

Open woodland (A.cambagei, E.ochrophloia). 
Grey and brown clays of light to medium textures. 

Low woodland (A.cambagei, Corymbia 
terminalis). Reddish-brown cracking clays or 
texture contrast soils with sandy surfaces. 

Woodland (Eucalyptus spp., Allocasurina sp. ). 
Bleached sodic duplex soils. 

stlaOJ(O) 

suns01(4) LiDAR: 2005/05/31 
Field: 2005/08/11 

I 53.05°E 26.01 °S Closed forest to low open woodland (E.racemosa, 
70 m ASL B.aemula, mixed species notophyll vine forest). 

Deeply leached sandy soils on sand dunes/plains. 
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FPC_, =IO{I-e•+S:A} (2) 

where a and b are parameters optimized from the field data and FPCA is the allometric 
estimate of percentage overstorey FPC. In order to account for measurement error in the 
calibration and restrict all predictions to the bounds of the observation space, a Bayesian 
errors-in-variable model was used to estimate 'true' overstorey FPC. Residual error in each 
field observation of SBA and FPCr were assumed to be from individual Gamma and Beta 
distributions respectively. Model fitting is by Markov Chain Monte Carlo (MCMC) methods 
implemented in the Bayesian modeling software WinBUGS' and is described further by 
Moffiet [44]. 

2.2.2 Estimation of overstorey foliage projective cover from airborne LiDAR 

LiDAR fractional cover is defined here as one minus the gap fraction probability Pgap at a 
zenith of zero. It was calculated from the proportion of first return counts by 

I - P (z) = C,. (z) , (3) 
gap Cv(O}+C 6 

where Cv(z) is the number of first returns higher than z m above the ground and CG is.the 
number of first return counts from the ground. All pulse scan angles were assumed to be zero. 

Images of the fractional cover estimates were calculated by aggregating all pulses into 25 
m spatial resolution bins and applying Eq. (3). For estimates of fractional cover z was set to 
0.5 m because overstorey individuals greater than 2 m height often have foliage lower than 2 
m height above the ground. This value ofz also reduces the impact ofunderstorey and ground 
(e.g. litter, termite mounds) features, which are difficult to separate below 0.5 m. 

Calibration of LiDAR fractional cover to estimates to overstorey FPC was performed 
using the 47 coincident FPCr estimates. The fraction of LiDAR pulses intercepted by a 
canopy above height z is determined by FPC but calibration is required to account for two 
sources of error: (i) LiDAR directly estimates overstorey plant projected cover (PPC) rather 
than overstorey FPC because it cannot discriminate photosynthetic from non-photosynthetic 
foliage; and (ii) the effect of extrinsic.(minimum return intensity required to register a return 
at the sensor; altitude and beam divergence) sampling properties of the LiDAR survey [42]. 
Calibrations of LiDAR fractional cover to overstorey FPC using counts of returns have in the 
past been linear [26,27], however these calibrations have been site and sensor specific and 
have not sampled high values of overstorey FPC. In this work a non-linear power function 
was used and had the property of being bounded between 0% and 100%, 

FPC L = 1 - Pgap a, (4) 

where a is the exponent to be optimized using field estimates of FPCr. Residual error in each 
observation of LiDAR P gap and FPCr were assumed to be from individual Beta distributions 
[44]. 

2.2.3 Relating the image data to the field and LiDAR data 

For all TM and ETM+ images spatially coincident with the field sites used for calibration of 
the regression models (Sec. 2.1.1 ), DNs from bands 2 to 7 were extracted for a 3 by 3 pixel 
block centered on the field site location and then averaged. This provided the best match to 
the spatial extent of field measurements and also minimized the impact of geometric 
misregistration between image and field data. 

; http://www.mrc-bsu.cam.ac.uk/bugs/winbugs/contents.shtrnl 
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For the airborne LiDAR, 3 by 3 pixel blocks were extracted from the nearest cloud free 
TM image in the SLATS image archive, averaged and then matched to 3 by 3 LiDAR bins of 
25 m spatial resolution (Sec. 2.2.2). Again, this was to minimize the impact of geometric 
misregistration and spatial regularization of the TM data due to the sensor point spread 
function, adjacency effects and resampling of the data. LiDAR bins with overstorey FPC 
greater than zero and all returns below 2 m height above ground were excluded due to 
confusion in the separation of overstorey and understorey FPC for heathland vegetation. 

The use of repeat Landsat observations spanning up to 18 years for each field site requires 
the assumption of negligible change in SBA over time. All field sites were located in inature 
undisturbed vegetation however the following sources of temporal change are present: 
• Tropical savanna woody species are the predominant vegetation type in northern 

Queensland and exhibit a marked increase in litter fall and hence reduced overstorey FPC 
during the dry season. Williams et al. [45] showed the within crown overstorey FPC 
changed up to 20% between the wet and dry seasons for some evergreen species and up 
to 40% when averaged over 49 species including evergreen, partly and fully deciduous. 

• Drought related tree dieback decreases the live SBA of a forest stand and hence the 
overstorey FPC. Extensive dieback in Eucalyptus dominated stands have been reported in 
northern Queensland during the l 990's drought [25]. 

• Woody thickening has occurred in places in response to climate change, altered fire 
regimes and introduction of livestock [3,46]. Averaged over 57 monitoring sites in 
Queensland, Burrows et al.[3] reported an increase of 1.06 m2 ha·• SBA over 14 years. 

Substantial spectral variation can be expected between Landsat images acquired over 
tropical savannahs at different times of the year due to green leaf phenology; and between 
Landsat images acquired in different years due to long term changes in SBA. The effect of 
green leaf phenology was controlled for to some extent by selection of dry season image 
dates. To mitigate the effect of long term changes in overstorey FPC, each Landsat date for a 
field site was treated as an independent observation in the regression analysis and was given a 
weighting of the number of days between the field and image acquisition dates, expressed as a 
fraction of the maximum number of days for all observations. 

2.3 Specification of the regression models 

Table 3 shows the six different regression models compared in this work. Non-linear variants 
of the MLR models and the GLMs were created by natural spline transformations of the 
predictors (Sec. 2.3.1). 

Table 3. The parametric (MLR, MLR-S, GLM, GLM-S) and machine learning 
(SVM, RF) regression models compared in this work. The model name acronyms 
are used throu_ghout the text. 

Model name Regression t~1:hnique 
MLR Multiple linear regression 
MLR-S Multiple linear regression with natural splines 
QLR Generalized linear model (quasi-likelihood) 
QLR-S Generalized linear model (quasi-likelihood) with natural splines 
SVM Support vector machines 
RF Random forests 

All regression models were trained using the open source software R (Version 2.5.1) [ 47]. 
Weighting of individual observations was not available for the R implementation of the RF 
and SVM regression algorithms. 
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2. 3.1 Transformation of the predictors 

Transformations were performed in order to meet common assumptions of the OLM and 
MLR models. The frequency distribution of each predictor was inspected for normality and 
the most appropriate transformation for bands 2, 3, 4 and 7 was their natural logarithm. No 
transformation was required for band 5 and a reciprocal transformation was applied to VPD. 
SVM and RF can model highly dimensional data and non-linear relationships, therefore no 
transformations of the Landsat bands and VPD were necessary for these models. 

The linearity assumption for the relationship between the predictors and the response 
variable can be relaxed through transformation of the predictors; the simplest way being the 
inclusion of higher powers of the explanatory variables (X) in the model. However 
polynomials do not fit logarithmic functions well and can produce spurious predictions at the 
peaks, valleys and edges of X Restricted cubic splines, also called natural splines, overcome 
these problems by fitting third order polynomials within intervals of X; the join points of 
intervals are referred to as knots [ 48]. Natural splines are smooth at the knots, fit highly 
curved functions well and are constrained to be linear at the edges of X Typically between 3 
and 5 knots are used depending on the degree of non-linearity of the problem and the number 
of observations [48]. Three knots were used in this work to minimize the risk of over-fitting 
and were positioned at the 0.1, 0.5 and 0.9 quantiles of X (MLR-S and OLM-S models). 

2.3.2 Multiple linear regression 

The MLR model can be written as 

Y = f,xJJi +t:' (5) 
i=I 

where /J; are the regression coefficients for the intercept and p-1 predictors (X) and e is the 
unexplained variance with e; independent N(O,d). The predictors consist of transformed 
Landsat bands 2-7, cross products of these bands (e.g. X:i){3) and VPD. The cross-products 
account for interactions between the Landsat bands where the relationship between the 
response variable ( Y) and one band can change depending on the value of another band. In the 
case of predicting overstorey FPC from Landsat, Lucas et al. [4] found that incorporating 
interaction terms into a multiple linear regression model reduced the .unexplained variance in 
the response variable. 

Candidate MLR models were generated for all possible combinations of predictors. 
Separate MLR models were calibrated for the TM and ETM+ sensors due to differences in 
the spectral bandwidth and response, particularly in band 5 and the lack of an operational 
radiometric cross-calibration [31]. Including a 'dummy' variable in the MLR model for the 
sensor would allow the model intercept to be adjusted but not the interaction terms. 
Incorporating additional 'dummy' variables to model the effect of the sensor on the Landsat 
band interactions is valid, but was not implemented to avoid excessively complex models. 

2.3.3 Generalized linear models 

The OLM [ 49] is an extension of MLR and can be written as 

E(Y)= µ = g(17), (6) 

where E(Y) is the expected value of Y, which is assumed to be from a distribution function 
(assumed to be normal for MLR). The mean value of each Y is equal toµ and is related to the 
linear predictor17, which is equal to the right hand side of Eq. (5), by a link function (g) that 
must be monotonic and differentiable. In this work FPCA was not generated from binomial 
sampling therefore we cannot directly specify a binomial probability distribution to the data. 
Instead we used a quasi-likelihood approach [49]. 
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The quasi-likelihood approach only requires specification of how the mean is related to 
the predictors (the link function) and how the variance is related to the mean (the variance 
function), not the full distribution. As the range of possible response values is bounded (O­
J 00%) and was calibrated using measurements generated by binomial sampling, we assume 
the variance function resembles that of a binomial distribution. Consistent with logistic 
regression, a logit link function was used to relate FPCA to the liriear predictors and 
V(µ)= µ(1- µ)was used as the variance function whereµ is the meanFPC.4. 

Candidate GLMs were generated for all possible combinations of predictors. For the same 
reasons as the MLR models, separate GLMs were calibrated for the TM and ETM+ sensors. 
The predictors specified for the MLR models were also used for the GLMs. 

2.3.4 Support vector machines 

The objective of SVM regression is to find the least complex continuous function.f(X) where 
the deviation from the response is no larger than E for all the training data. The SVM model 
only depends on a subset of the training data (termed support vectors), because the loss 
function ignores any training data that are close (within the threshold E) to the model estimate. 
Non-linearity is handled by substituting a radial basis kernel function into the model 
optimization, which maps the input (X) to higher dimensional feature space. For a more 
detailed mathematical explanation ofSVM regression see Smola and Scholkopf[50]. 

In addition to E the training of the SVM model depends on the values of the regularization 
constant (C) and the Parzen window width for the radial basis kernel function (n. C 
determines the trade-off between model complexity and the degree to which the deviations 
greater than E are tolerated. In order to avoid a computationally intensive grid search to 
determine optimal values of y, C and E simultaneously, the approach of Cherkassky and Ma 
[51] was adopted. This analytical derivation of C and E is based on a theoretical 
understanding of SVM. The outlier resistant calculation of C was 

C = max~y + 3a,j,jy-3a,j), (7) 

where y and ar are the mean and standard deviation of the response variable (FPCA), 

respectively [ 51]. The parameter E was calculated as 

-3 pn(n) (8) E- CY __ , 
n 

where ais the standard deviation of the noise in the data, and n is the number of observations. 
Equation (8) is based on the knowledge that eis proportional to a[51]. We calculated aby 
following the k-nearest-neighbour regression procedure of Cherkassky and Ma [51 ]. The 
value for y was calculated by empirically tuning the SVM model using a grid search with a 
random subset of 10% of the calibration data. Other kernel functions (e.g. polynomial) and 
their parameters were tested but the radial basis function provided marginally better fits to the 
training data. These results are not presented here for brevity. 

2.3.5 Random forests 

Random Forests are an extension of the classification and regression tree (CART) algorithm 
[52]. A forest is a user determined number of decision trees. Each decision tree is grown by 
randomly sampling approximately two thirds of the training data with replacement (termed 
bagging). At each node of each tree, m variables are randomly selected from the set of 
predictors. The best split using these m variables is the split point and predictor that results in 
the greatest reduction in residual sums of squares between the sample of observations and the 
node mean. This process is used to perform recursive binary splits of the data. 
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The value of m is held constant and each decision tree is grown to the largest extent 
possible (no pruning). This process is repeated to build an ensemble of regression trees with. 
each tree being a low bias, high variance regression model. The predictions are then averaged 
to calculate a final estimate of the response variable. The ensemble averaging results in a low 
bias, low variance regression model that is resistant to over-fitting [53]. 

The parameters m and n (the number of regression trees in the forest) need to be set to 
minimize the prediction error of the forest while minimizing computer processing time. The 
forest prediction error (PEF) depends on: (i) the mean correlation between any two trees in the 
forest (p); and (ii) the prediction error of a single tree in the forest (PEr) [53], 

PEF ~ p PET. (9) 

When m is equal to I, p is low and PEr high, and when m is raised top, p is increased 

and PEr reduced. Therefore the selection of a value for m is a trade-off between p and PEr. 

The prediction error of random forests is largely insensitive to m [53] therefore it was 
calculated as the recommended p/3 to avoid a computationally intensive grid search. 

2.4 Comparison of the regression models 

2.4.1 Model selection 

The error statistic used for the selection of models for each of the six regression techniques 
was the root mean squared error (RMSE), 

RMSE=.t..!..f£/, (10) 
N i=I 

where N is the number of observations and the error, £1 = y1 - J(x,), the difference between 

observed and predicted values of overstorey FPC, respectively. 
The candidate models for each parametric regression technique were grouped by number 

of predictors and then sorted by RMSE. The five best fitting models in each group were 
retained. In order to ensure over-fitting was not occurring and to get an unbiased estimate of 
prediction error from the training data, a bootstrap estimate (25 samples with replacement) 
[48] of RMSE was then calculated for each model. The model with the lowest bootstrap 
RMSE in each group was then retained. 

The optimum number of predictors was selected as the minimum number of terms of 
models with a percentage difference of the bootstrap RMSE relative to the minimum of all 
candidate models of< 0.1 %. Although multi-collinearity makes it difficult to make inferences 
from the model coefficients as their standard errors are inflated [48] it was not considered 
problematic as the objective was simply to minimize the bootstrap RMSE. 

The bootstrap RMSE of the RF and SVM regression models was also calculated using the 
same procedure. The R implementation of RF produces an out-of-bag error rate that is an 
unbiased estimate of prediction error, however for consistent comparison the same bootstrap 
approach used for the parametric models was followed. Candidate RF models were generated 
by increasing the number of trees (n) by 2', x = I, 2 ... 10. 

The comparison of the regression models then consisted of inspection of the model's 
prediction error (Sec. 3.2). It is important to note that visual inspection of overstorey FPC 
images derived from each of the regression models was also part of the model comparison. 

2.4.2 Validation of the regression model predictions 

Equation (10) squared is the mean squared error (MSE), which is decomposed into bias and 
variance error components. The variance error is used here as an indicator of the precision of 
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regression model predictions of overstorey FPC in comparison to the independent field and 
airborne LiDAR-derived estimates, 

I N ( -)' 
variance=-I E,-EJ, 

N i=I 

(11) 

where E is the mean error. The bias error is the average difference, an indicator of accuracy, 
between the regression model predictions of overstorey FPC and the independent field and 
airborne LiDAR-derived estimates, 

1 N 
bias=-LE,· (12) 

N i=I 

The RMSE is then equal to,J~~-ar-i-an_c_e_+_b_i-as-2 • The validation of.the regression models 

was done by assessment of the ?, RMSE, bias and variance of model predictions in 
comparison with independent field and LiDAR survey estimates of overstorey FPC (Sec. 3.3). 

3 RES UL TS AND DISCUSSION 

3.1 Evaluation of stand basal area and LiDAR-derived estimates of overstorey 
foliage projective cover 

Figure 4 shows the field data and fitted model with a= -38.6 and b = 0.359. The residuals are 
larger at higher SBA(> 40 m2 ha-1) which is consistent with the Gamma error distribution. 
Eq. (2) assumes leaf angle is a function of SBA. There was no correspondence between the 
dominant genus and the magnitude of the residuals, suggesting differences in canopy 
structure between vegetation types do not contribute greatly to the observed scatter. 
Unfortunately, there were insufficient coincident field estimates of foliage clumping or leaf 
angle distribution to support further analysis of the effect of related canopy variables on the 
relationship at these sites. Despite these limitations the agreement is excellent (RMSE = 
7.26% FPCr) and the residuals are consistent with that expected from the joint Beta and 
Gamma probability distributions. The derived parameters a and b for Eq. (2) were used to 
calculate FPCA using all field estimates of SBA. 

There is excellent agreement between the field estimates of FPCr and LiDAR-derived 
fractional cover and the residuals are consistent with a binomial sampling distribution (Fig. 5 
left; RMSE = 5.34% FPCr), The non-linear relationship (a= 0.4802), Eq. (4), indicates the 
sampling properties of the sensor are causing LiDAR fractional cover to systematically 
overestimate overstorey FPC. This is due to the footprint size of the LiDAR pulse being blind 
to small gaps in the foliage detected using the point intercept field technique. As overstorey 
FPC increases, the gap size distribution is increasingly dominated by gaps smaller than the 
LiDAR pulse footprint. It is assumed the gap size distribution changes as a function of 
overstorey FPC. This assumption is important because it is possible for the gap size 
distribution to change with inclination angle and clumping of leaves without any change in 
LiDAR fractional cover. 

Published measurements of Australian woody species show the leaf size of many species 
is less than the LiDAR beam cross-sectional area used in this work and that there is 
considerable natural variation in leaf angle [54]. Therefore increased scatter in the FPCr and 
LiDAR fractional cover relationship is possible due to variation in canopy structure and its 
interaction with the minimum intensity threshold required for a return to be detected by the 
sensor [29]. The intensity also depends on the reflectivity as well as the structural 
characteristics of the intercepted surface. Despite these sources of variation not being 
controlled for, the small residuals in Fig. 5 (left) suggest the assumption that the gap size 
distribution changes as a function of overstorey FPC is generally valid. 
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Fig. 4. The relationship between overstorey foliage projective cover (FPC) and stand 
basal area. Symbols correspond to the source of the field data (Sec. 2.1.1 ). The 
prediction intervals (dashed) and fitted (solid) lines are shown. 

Overstorey FPC is always less than or equal to overstorey plant projective cover (PPC). 
The derivation of overstorey FPC using Eqs. (3) and (4) also assume the relative proportions 
of photosynthetic and non-photosynthetic plant material visible to the LiDAR sensor are 
constant or change as a function of overstorey FPC. Figure 5 (right) shows that there is 
greater variation in FPCT around 50% PPCT and far less towards 0% and 100% PPCT, which 
is consistent with a binomial sampling distribution. Figure 5 (right) is suggested to represent 
the maximum envelop of overstorey FPC-PPC difference for remnant vegetation due to tree 
architecture. This is simply because field estimates are derived "looking up" while LiDAR 
estimates are "looking down" so photosynthetic foliage tends to occlude the stems and 
branches from the view of the LiDAR sensor. 

The LiDAR estimates of fractional cover were calibrated to FPCL using Eq. (4). This 
calibration will require further validation for acquisitions in new areas due to the limitations 
discussed above. Any changes in the intrinsic or extrinsic sampling properties of the LiDAR 
sensor will also require re-calibration. The return intensity is sensitive to the area of 
intercepted surfaces and be can be used to derive estimates of overstorey FPC using the 
Optech ALTM3025 sensor [11,29]. However its calibration is unknown and requires 
assumptions to be made about the relative reflectivity of the foliage and ground material and 
the intensity response of the sensor. 

3.2 Comparison of the regression models' prediction error 

The final models selected were the most parsimonious possible for each regression technique 
using the criterion outlined in Sec. 2.4. All the selected parametric models had nine predictors 
(5 bands, 3 interactions, VPD). The SVM parameters C, e and ywere calculated as 75.78, 
0.423 and 0.25 respectively. The final RF model had n set to 64, after which reductions in 
RMSE were < 0.1 % FPCA. All the selected regression models fitted the training data well 
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Fig. 6. Box-and-whisker plots of model bootstrap-derived residuals showing the 
median (dot). first and third quartiles (box). and the most extreme, alue which is no 
more than 1.5 times th.; length of the box away from the box (\\ hiskcrs) at 20'Yu 
intervals of overstorey foliage projective co, er for each regression model. 

These results arc consistent with other published findings that have shown machine 
learning regression techniques provide more accurate predictions than parametric regression 
techniques [ 13, 17, 18]. RF is clearly the best model fit with a narrow distribution of residuals. 
Brei man [53] demonstrated that RF cannot over-fit the training data due to the "Law of Large 
Numbers". The bootstrap error results empirically support this however they arc still 
dependent on hmv representative the training data is of the multidimensional spectral space of 
the predictors in Queensland, which has not been presented in this work. Therefore the 
regression models need to be tested against independent estimates of overstorey FPC at 
locations away from the training data. This is the focus of Sec. 3.3. 

3.3 Validation of the regression model predictions 

3.3.1 Comparison with field-derived estimates o.ffoliage projective cover 

The ETM+ and TM-derived predictions of ovcrstorcy FPC arc strictly an estimate of FPC 1• 

Table 5 shows all the regression models are performing well in comparison to independent 
field estimates of FPCA. The RMSE statistics are slightly greater than the model and 
bootstrap RMSE statistics shown in Table 4. Since there was only a relatively small number 
of independent observations available for comparison it was not possihlc to e\ aluate the hias 
and variance of the prediction error for different intervals of overstorey FPC and regional 
areas . 
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Table 5. A comparison of field-derived overstorey and evergreen foliage projective 
cover (FPC) and field stand basal area-derived estimates of estimates of overstorey 
FPC with predictions from near coincident Landsat-5 TM observations for each 
re ession model n = 46 . Sec 2.4 defines the error metrics used. 

Reference Model RMSE variance bias 

Overstorey FPCr MLR 0.79 10.26 102.08 -2.31 

MLR-S 0.78 10.66 103.37 -3.54 

OLM 0.79 10.32 104.51 -2.08 

GLM-S 0.78 10.83 106.91 -3.57 

SVM 0.84 9.14 75.91 -3.04 

RF 0.83 9.27 80.72 -2.65 

Evergreen Fl'C1 MLR O.S9 8.16 68.07 (l.08 

MLR-S 0.87 8.57 73.67 -ll5 

GLM 0.89 8.14 67.61 0.31 

CiLM-S 0.86 8.60 74.18 -1.17 

SVM 0.85 8.83 79.24 -0.65 

RF 0.82 9.51 92.30 -0.25 

Ovcrslurcy FP( ·. 1 MLR 0.80 9.45 83 04 -2.83 

MLR-S 0.80 9.83 81.82 -4.06 

GLM 0.79 9.57 86.71 -2.60 

CiLM-S 0 79 10.29 91.13 -4 08 

SVM 0.83 9.15 72.58 -3.56 

RF 0.82 9 09 74.22 -3.16 

TM-derived predictions of overstorey FPC were also compared to independent field 
estimates of ovcrstorcy and C\'ergrecn FPCr. E\'ergreen FPC was defined as the horizontally 
projected percentage CO\'er of photosynthetic foliage from tree and shrub life fonns of all 
heights. Table 4 shows the results are similar for all estimates ofFPC however the RMSE and 
r2 for evergreen FPCr are slightly better for the parametric models. The biases for the 
evergreen FPC predictions arc closer to zero for all models compared to the overstorey FPC 
predictions, howe\ er the variance of the residuals is worse for the SVM and the RF models. 
These differences in bias are sensible, since evergreen FPC in the understorey from small 
shrubs and saplings do not contribute to overstorey FPC but still partially determine the 
observed surface reflectance. It appears that the predictions from the parametric models 
correspond more closely with evergreen FPC rather than overstorey FPC. This doesn't hold to 
the same extent for the machine learning models. 

The influence of herbaceous FPC on the models predictions is clarified by e\'aluating the 
ETM+ and TM-derived predictions in areas of known zero overstorey FPC. Figure 7 shows 
that over-prediction of overstorey FPC with increasing herbaceous FPC is the general trend 
for all models. The standard deviations of the residuals for each interval of herbaceous FPC 
arc thought lo be partially explained by the difference in date between the image and field 
data. £\ en though this is less than sixteen days. changes in green leaf phenology have been 
observed. The SVM and RF models exhibit less bias than the other models. One notable 
difference is the t-:S-95% interval for SYM which has a relatively small mean and standard 
deviation of the residuals, however there are only three observations in this interval so it is 
difficult to draw any conclusions . 
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Fig. 7. The bias for 10% intenals of field estimated herbaceous FPC. The \Cliical 
bars show one standard deviation ( ,./variance ). Sec 2.4 defines bias and variance. 

These results suggest that the on:rstorcy and undcrstorcy components of FPC arc not 
spectrally separable over multiple scenes in Queensland. The bias due to herbaceous 
understorey FPC is a far greater problem for monitoring long-term changes in overstorey FPC 
than hias due to other factors such as soil and vegetation type that arc relatively invariant over 
time apart from perturbations from fire and anthropogenic change. A number of Australian 
studies using coarse spatial resolution but high temporal resolution sensors (A VHRR, 
MODIS) have demonstrated seasonal (usually herbaceous) and evergreen FPC can be 
separated using seasonal trend decomposition [ 11,55]. However the sparse temporal sampling 
of Landsat does not permit such analyses. Presentation of a method for separation of the 
overstorey and understorey components of FPC using simple temporal metrics [ l] was 
beyond the scope of this paper because the objective was to develop regression models that 
could be applied to individual Landsat acquisitions rather than multi-temporal composites. 

3.3.2 Comparison ivith LiDAR-deriFed estimates of ovcrs/oreyfoliage projective 
cover 

A comparison of all the LiDAR and TM-derived estimates of overstorey FPC is shown in Fig. 
8. The error statistics indicate little cliffcrcncc between the regression models, which is 
consistent with the bootstrap error (Table 4) and field validation (Table 5) results. The RF 
model performs best (RMSE = 8.6) and the GLM-S model worst (RMSE = 9.4). All models 
have an r2 close to 0.8 and a RMSE less than 10%. The negligible difference in error statistics 
suggest all models arc performing equally well. The clustered distribution of FPC1 values, 
which can be obserYed in Fig. 8, means that 0-20% and 40-50% FPC values are dominating 
the results . 
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FPC present from Oto 1 m above the ground (see "sunsOl" in Fig. 3 for an example). The 
LiDAR-derived estimates of overstorey FPC included foliage above 0.5 m causing confusion 
in the separation of overstorey and understorey FPC. Commission errors in the classification 
of LiDAR ground returns also occur when there is high understorey FPC. The variance 
proportion of the MSE for the "goldOl" survey site is also high and visual comparison of the 
LiDAR and TM-derived images of overstorey FPC confirmed the regression model 
predictions were sensitive to topographic relief. The preprocessing of the TM and ETM+ 
imagery (Sec. 2.1.2) does not include a radiance based topographic correction, which is the 
subject of current research by SLATS. 
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Fig. 10. Maps of LiDAR-derived overstorey foliage projective cover (FPC) and 
Landsat-5 TM-derived predictions fclr the multiple linear regression and random forests 
regression models. Images of areas with mulga ("adavO I"), rainforest ("sunsO I") and 
spinifex ("gunpOI ") communities are shown. Note that overstorey FPC tends to be 
overestimated in spinifex communities . 
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Figure 10 shows regional examples of the differences between the LiDAR and TM­
derived estimates of overstorey FPC. The left column shows the positive bias in areas of 
A.aneura. The middle column shows the larger positive bias of predictions from the 
parametric models relative to the machine learning models where FPCL is greater than -60%. 
Finally, the right column shows the negative bias in areas where there is high understorey 
herbaceous FPC (Triodia spp.). A 2005 dry season map of overstorey FPC predictions from 
the RF model for Queensland, Australia, is shown in Fig. 11 demonstrating Landsat imagery 
can be used for large area mapping ofFPC. Some scene-to-scene differences can be observed 
and are indicative of changes in green leaf phenology in response to rainfall and other climate 
drivers, which are typical of mixed woody-herbaceous ecosystems. Careful selection of 
image dates is required to minimize the effects of herbaceous FPC, cloud and smoke cover on 
overstorey FPC predictions. 

4 CONCLUSIONS 

The aim of this work was to compare parametric (MLR, GLM) and machine learning 
algorithms (RF, SVM) for predicting overstorey FPC across multiple Landsat scenes in 
Queensland, Australia. For the application of estimating overstorey FPC, all of the models 
provided similar overall accuracy and precision for Queensland conditions. The machine 
learning models provided an imprO\cd fit to the data above -60% overstorcy FPC but 
otherwise had comparable accuracy and precision to the parametric models. The GLM 
provides similar quality predictions to MLR but is more appropriate for the error distribution 
of SBA or overstorey FPC and has the advantage of making no physically unrealistic negative 
predictions. If the objective is simply to maximize predictive accuracy of a single variable, 
the use of RF or SYM is recommended as both the model fits and validation showed these 
provided optimum results overall. The RF model has the advantage of being transparent and 
easily parallclizablc for computational efficiency. 

Highly accurate estimates of overstorey FPC ( < 5% RMSE) were derived from airborne 
LiDAR over large range of plant communities in Queensland. These data allowed the 
accuracy of precision of Landsat-derived overstorey FPC to be assessed within regional areas, 
demonstrating the utility of airborne Li DAR for cost-effective sampling over large areas. This 
avoided the need to use stand scale allometric estimates of overstorey FPC derived from field 
estimates of SBA for calibration and its associated assumptions about canopy structure, which 
was a limitation of this work. Future de,·elopment of airborne LiDAR for automated sampling 
of FPC at different heights in the canopy profile requires separation of photosynthetic and 
non-photosynthetic cover fractions, radiometric calibration of the backscattered intensity to a 
physical quantity and knowledge of the relative ground and foliage reflectivity. Future 
availability of the Carnegie Airborne Observatory [56] or a similar combination of a 
calibrated full-waveform LiDAR and hyperspectral scanner in Australia has potential to 
resolve these issues and improve automated sampling of canopy structure. 

The validation of predictions from all the candidate models using independent field and 
LiDAR estimates of overstorey FPC has shown that ovcr,torcy FPC was predicted from T'vl 
multi-spectral imagery with less than I 0% RMSE overall. The major limitation of predictions 
made from any of the regression models developed using the approach presented in this work 
was that ovcrstorey and undcrstorcy FPC were not decoupled. This has serious implications 
for trend analysis of woody vegetation cover because photosynthetic herbaceous FPC will 
increase the variance of the sparse Landsat time-series. Several avenues ofresearch at a range 
of spatial and temporal scales have since been followed to address this limitation [ L1 1 ]. 
Future research into the detection of long-term trends in woody vegetation cover is being 
directed at time-series analysis of the entire Landsat archive, which is becoming easier to 
access since the United States Geological Survey Landsat archive became freely 
downloadable from December 2008. The use of overstorcy FPC products derived from TM or 
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ETM+ data using any of the regression models developed in this work requires the 
assumption of a senescent or absent herbaceous understorey at the time of image acquisition. 
Careful selection of dry season image dates is suggested for best results in Queensland. 
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